p-group, metabelian, nilpotent (class 2), monomial
Aliases: C25.56C22, C23.570C24, C24.383C23, C22.3442+ 1+4, C2.34D42, C22⋊C4⋊9D4, C24⋊3C4⋊22C2, C23⋊2D4⋊33C2, (C2×C42)⋊28C22, C23⋊Q8⋊37C2, C23.202(C2×D4), C2.82(D4⋊5D4), (C22×Q8)⋊7C22, (C22×D4)⋊12C22, C23.166(C4○D4), C23.10D4⋊70C2, (C22×C4).175C23, C22.379(C22×D4), C2.C42⋊34C22, C24.3C22⋊71C2, C2.3(C24⋊C22), C24.C22⋊115C2, C2.57(C22.32C24), C2.52(C22.29C24), (C2×C4⋊C4)⋊30C22, (C2×C4).410(C2×D4), (C2×C22≀C2)⋊13C2, (C2×C4.4D4)⋊24C2, (C2×C22⋊C4)⋊27C22, C22.436(C2×C4○D4), SmallGroup(128,1402)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for C23.570C24
G = < a,b,c,d,e,f,g | a2=b2=c2=f2=g2=1, d2=e2=a, ab=ba, ac=ca, ede-1=ad=da, geg=ae=ea, af=fa, ag=ga, bc=cb, fdf=bd=db, be=eb, bf=fb, bg=gb, cd=dc, fef=ce=ec, cf=fc, cg=gc, gdg=abd, fg=gf >
Subgroups: 980 in 398 conjugacy classes, 104 normal (22 characteristic)
C1, C2, C2, C2, C4, C22, C22, C22, C2×C4, C2×C4, D4, Q8, C23, C23, C23, C42, C22⋊C4, C22⋊C4, C4⋊C4, C22×C4, C22×C4, C2×D4, C2×Q8, C24, C24, C24, C2.C42, C2.C42, C2×C42, C2×C22⋊C4, C2×C22⋊C4, C2×C4⋊C4, C22≀C2, C4.4D4, C22×D4, C22×D4, C22×Q8, C25, C24⋊3C4, C24.C22, C24.3C22, C23⋊2D4, C23⋊2D4, C23⋊Q8, C23.10D4, C2×C22≀C2, C2×C4.4D4, C23.570C24
Quotients: C1, C2, C22, D4, C23, C2×D4, C4○D4, C24, C22×D4, C2×C4○D4, 2+ 1+4, C22.29C24, C22.32C24, D42, D4⋊5D4, C24⋊C22, C23.570C24
(1 3)(2 4)(5 7)(6 8)(9 11)(10 12)(13 15)(14 16)(17 19)(18 20)(21 23)(22 24)(25 27)(26 28)(29 31)(30 32)
(1 25)(2 26)(3 27)(4 28)(5 12)(6 9)(7 10)(8 11)(13 18)(14 19)(15 20)(16 17)(21 32)(22 29)(23 30)(24 31)
(1 11)(2 12)(3 9)(4 10)(5 26)(6 27)(7 28)(8 25)(13 24)(14 21)(15 22)(16 23)(17 30)(18 31)(19 32)(20 29)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)
(1 20 3 18)(2 19 4 17)(5 21 7 23)(6 24 8 22)(9 31 11 29)(10 30 12 32)(13 25 15 27)(14 28 16 26)
(1 8)(2 12)(3 6)(4 10)(5 26)(7 28)(9 27)(11 25)(13 18)(15 20)(22 29)(24 31)
(1 11)(2 7)(3 9)(4 5)(6 27)(8 25)(10 26)(12 28)(13 22)(14 32)(15 24)(16 30)(17 23)(18 29)(19 21)(20 31)
G:=sub<Sym(32)| (1,3)(2,4)(5,7)(6,8)(9,11)(10,12)(13,15)(14,16)(17,19)(18,20)(21,23)(22,24)(25,27)(26,28)(29,31)(30,32), (1,25)(2,26)(3,27)(4,28)(5,12)(6,9)(7,10)(8,11)(13,18)(14,19)(15,20)(16,17)(21,32)(22,29)(23,30)(24,31), (1,11)(2,12)(3,9)(4,10)(5,26)(6,27)(7,28)(8,25)(13,24)(14,21)(15,22)(16,23)(17,30)(18,31)(19,32)(20,29), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32), (1,20,3,18)(2,19,4,17)(5,21,7,23)(6,24,8,22)(9,31,11,29)(10,30,12,32)(13,25,15,27)(14,28,16,26), (1,8)(2,12)(3,6)(4,10)(5,26)(7,28)(9,27)(11,25)(13,18)(15,20)(22,29)(24,31), (1,11)(2,7)(3,9)(4,5)(6,27)(8,25)(10,26)(12,28)(13,22)(14,32)(15,24)(16,30)(17,23)(18,29)(19,21)(20,31)>;
G:=Group( (1,3)(2,4)(5,7)(6,8)(9,11)(10,12)(13,15)(14,16)(17,19)(18,20)(21,23)(22,24)(25,27)(26,28)(29,31)(30,32), (1,25)(2,26)(3,27)(4,28)(5,12)(6,9)(7,10)(8,11)(13,18)(14,19)(15,20)(16,17)(21,32)(22,29)(23,30)(24,31), (1,11)(2,12)(3,9)(4,10)(5,26)(6,27)(7,28)(8,25)(13,24)(14,21)(15,22)(16,23)(17,30)(18,31)(19,32)(20,29), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32), (1,20,3,18)(2,19,4,17)(5,21,7,23)(6,24,8,22)(9,31,11,29)(10,30,12,32)(13,25,15,27)(14,28,16,26), (1,8)(2,12)(3,6)(4,10)(5,26)(7,28)(9,27)(11,25)(13,18)(15,20)(22,29)(24,31), (1,11)(2,7)(3,9)(4,5)(6,27)(8,25)(10,26)(12,28)(13,22)(14,32)(15,24)(16,30)(17,23)(18,29)(19,21)(20,31) );
G=PermutationGroup([[(1,3),(2,4),(5,7),(6,8),(9,11),(10,12),(13,15),(14,16),(17,19),(18,20),(21,23),(22,24),(25,27),(26,28),(29,31),(30,32)], [(1,25),(2,26),(3,27),(4,28),(5,12),(6,9),(7,10),(8,11),(13,18),(14,19),(15,20),(16,17),(21,32),(22,29),(23,30),(24,31)], [(1,11),(2,12),(3,9),(4,10),(5,26),(6,27),(7,28),(8,25),(13,24),(14,21),(15,22),(16,23),(17,30),(18,31),(19,32),(20,29)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32)], [(1,20,3,18),(2,19,4,17),(5,21,7,23),(6,24,8,22),(9,31,11,29),(10,30,12,32),(13,25,15,27),(14,28,16,26)], [(1,8),(2,12),(3,6),(4,10),(5,26),(7,28),(9,27),(11,25),(13,18),(15,20),(22,29),(24,31)], [(1,11),(2,7),(3,9),(4,5),(6,27),(8,25),(10,26),(12,28),(13,22),(14,32),(15,24),(16,30),(17,23),(18,29),(19,21),(20,31)]])
32 conjugacy classes
class | 1 | 2A | ··· | 2G | 2H | ··· | 2M | 2N | 2O | 4A | ··· | 4L | 4M | 4N | 4O | 4P |
order | 1 | 2 | ··· | 2 | 2 | ··· | 2 | 2 | 2 | 4 | ··· | 4 | 4 | 4 | 4 | 4 |
size | 1 | 1 | ··· | 1 | 4 | ··· | 4 | 8 | 8 | 4 | ··· | 4 | 8 | 8 | 8 | 8 |
32 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 4 |
type | + | + | + | + | + | + | + | + | + | + | + | |
image | C1 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | D4 | C4○D4 | 2+ 1+4 |
kernel | C23.570C24 | C24⋊3C4 | C24.C22 | C24.3C22 | C23⋊2D4 | C23⋊Q8 | C23.10D4 | C2×C22≀C2 | C2×C4.4D4 | C22⋊C4 | C23 | C22 |
# reps | 1 | 1 | 2 | 2 | 3 | 1 | 2 | 2 | 2 | 8 | 4 | 4 |
Matrix representation of C23.570C24 ►in GL6(𝔽5)
4 | 0 | 0 | 0 | 0 | 0 |
0 | 4 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 4 | 0 | 0 | 0 |
0 | 0 | 0 | 4 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 4 | 0 |
0 | 0 | 0 | 0 | 0 | 4 |
0 | 3 | 0 | 0 | 0 | 0 |
3 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 3 | 3 | 0 | 0 |
0 | 0 | 4 | 2 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 1 | 0 | 0 | 0 | 0 |
4 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 1 | 0 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 4 | 0 | 0 | 0 |
0 | 0 | 2 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 4 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 4 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 3 | 4 | 0 | 0 |
0 | 0 | 0 | 0 | 4 | 0 |
0 | 0 | 0 | 0 | 0 | 4 |
G:=sub<GL(6,GF(5))| [4,0,0,0,0,0,0,4,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,4,0,0,0,0,0,0,4],[0,3,0,0,0,0,3,0,0,0,0,0,0,0,3,4,0,0,0,0,3,2,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[0,4,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,1,0],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,4,2,0,0,0,0,0,1,0,0,0,0,0,0,4,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,4,0,0,0,0,0,0,1,3,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,4] >;
C23.570C24 in GAP, Magma, Sage, TeX
C_2^3._{570}C_2^4
% in TeX
G:=Group("C2^3.570C2^4");
// GroupNames label
G:=SmallGroup(128,1402);
// by ID
G=gap.SmallGroup(128,1402);
# by ID
G:=PCGroup([7,-2,2,2,2,-2,2,2,112,253,120,758,723,1571,346]);
// Polycyclic
G:=Group<a,b,c,d,e,f,g|a^2=b^2=c^2=f^2=g^2=1,d^2=e^2=a,a*b=b*a,a*c=c*a,e*d*e^-1=a*d=d*a,g*e*g=a*e=e*a,a*f=f*a,a*g=g*a,b*c=c*b,f*d*f=b*d=d*b,b*e=e*b,b*f=f*b,b*g=g*b,c*d=d*c,f*e*f=c*e=e*c,c*f=f*c,c*g=g*c,g*d*g=a*b*d,f*g=g*f>;
// generators/relations